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We apply the real space dynamic renormalization group method to the one- 
dimensional spin-exchange kinetic Ising model. We show that the conservation 
of magnetization property of this model is preserved directly under renormaliza- 
tion. We also demonstrate that one can derive recursion relations for the space- 
and time-dependent correlation functions and that the iterated solutions of these 
recursion relations lead to the appropriate hydrodynamic forms in the small- 
wavenumber and -frequency regime. 
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1. INTRODUCTION 

The real space dynamic renormalization group (RSDRG) method has 
recently been introduced and applied (~-16~'2 to one- and two-dimensional 
spin-flip kinetic Ising models. In particular in our own work it was 
shown (2'5'8'16~ how one could map the pseudo-Liouville operators governing 
the dynamics in these models onto coarse-grained operators governing 
the dynamics of a set of coarse-grained spins in such a way that the 
"renormalized" operator is free from any pathological long-range interac- 
tions in space or time. We also showed (12-~6) that one can derive recursion 
relations relating space- and time-dependent correlation functions defined 
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functions over a wide range of parameters. 
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for an original set of spins to a coarse-grained set of block spins. The 
physics behind this development is that short range rapidly varying degrees 
of freedom can be treated directly using perturbation theory while the 
long-range, slowly varying degrees of freedom are treated iteratively. In this 
way we simultaneously preserve the local structure and build up long-range 
correlations. The iterated solutions of these recursion relations have led to 
excellent approximations for various static and dynamic quantities in the 
spin-flip models over a wide range of temperatures, wave numbers, and 
frequencies. 

Spin-exchange kinetic Ising models (17-19) are constructed such that the 
total magnetization is a conserved quantity. While these models have been 
more extensively studied numerically (2~ than the single-spin-flip models, 
there is in greater than one dimension almost no analytical work beyond 
Kawasaki's 07"j8) original mean-field-like treatment of diffusion. Recently 
there has been some discussion of general spin-exchange models in one 
dimension (23) and Zwerger (19) has found a particular model for which 
one can find the diffusion coefficient exactly. We discuss this further in 
Section 2. However, there has been very little work treating models which 
cannot be solved exactly. Developing approximation methods for such 
problems in one dimension seems worthwhile since it is very unlikely that 
we wilt find an exact solution in higher dimensions. With this in mind we 
address three basic questions in this paper: 

i. Can our RSDRG methods be extended to handle conserved 
variables? 

ii. Wilt our recursion relations connecting dynamic structure factors on 
the coarse-grained and original lattices be able to reproduce the appropri- 
ate hydrodynamical spectrum in the small-frequency and small-wave- 
number limits? 

iii. Will our coarse-graining procedure, where we must construct the 
mapping function T[/L 1 o] as a solution to an eigenvalue equation, lead to a 
different treatment of the static behavior than we found in the single-spin- 
flip case? The point of this question is whether or not our method couples 
the treatment of the static behavior to that of the dynamic behavior. 

The answers to (i) and (ii) are an unqualified yes. In addressing 
question (iii) we found exactly the same static behavior as for the single- 
spin-flip case to the order we investigated. We do not have a general proof 
that the static behavior can be treated in an identical manner for the two 
models to all orders in our RSDRG development. 

In Section 2 we introduce the model studied and point out a few 
quantities that are known exactly. We describe briefly the RSDRG method 
in Section 3 and indicate how it can be directly applied to a system with a 
conserved variable. In Section 4 we develop a perturbation theory approach 
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for implementing the RSDRG where we break the system up into cells of 
spins and treat the interactions between cells as a small parameter. We 
implement this expansion in Section 5 to carry out our renormalization 
procedure to lowest order in the expansion parameter. In Section 6 we 
determine the recursion relations satisfied by the basic parameters in the 
theory and then between various correlation functions. Using these results 
we tie down the parameters which enter into the perturbation expansion. 
Finally, in Section 7 we discuss the results of our calculations for various 
dynamic quantities, some of the limitations of this treatment and their 
possible remedies. 

2. THE ONE-DIMENSIONAL SPIN-EXCHANGE MODEL 

We consider a one-dimensional chain of N ferromagnetic lsing spins 
{ a} = (a  1 , a 2 . . . . .  a, } with lattice spacing a 0. The equilibrium probability 
distribution function is given by the Boltzmann factor 

P[ a] - e't"] (2.1) 
Z 

where H[o] is the Hamiltonian (multiplied by - 1/k  B T) given by 

~/[a] = KY.o.o.+,  (2.2) 
n 

where we consider nearest-neighbor coupling, K ( >  O) is just the exchange 
constant divided by k B T and the partition function Z is the sum over all 
spin configurations. We can, of course, calculate any static correlation 
function of interest exactly in this case. 

The dynamics in our model is generated by a pseudo-Liouville opera- 
tor/)~ such that, for example, the equilibrium correlation of a spin at lattice 
sitej at time zero with a spin at site i at time t is given by 

C~j( t) = ~ P[ a ] ajeJS"'oi (2.3) 
0 

/)~ is a matrix operator (/) [a I a]) whose general properties are described in 
Ref. 8. There are three basic conditions that D o should satisfy: (i) station- 
arity and detailed balance, (8) (ii) locality in space (as required of a model 
with nearest-neighbor interactions only), and (iii) conservation of total spin. 

The general one-dimensional operator which satisfies (ii) and (iii) is of 
the form 

/)o =/).,o +/)/~,o (2.4) 
where 

~ A[i,i+ 1]w[i,i+ l](_x/~ 
Oc~,a = -- -2 z~--a,o '  ~ a \ o ) ~ , u i -  o,+ 1 ) ( o ; -  Oi+ 1) (2.5) 

i 
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and 

/~ ~-a A[i,i+ 1]1/1-/-[i,i + 11 ' ' (2.6) zSB,o = - " B  (o)  oi+1oioi+1 
i 

Here, a and/8 are constants which set the time scales, A Ii'i+ 1] is the product o,o" 
of 6 functions, which sets a equal to a' except at sites i and i + 1 and the 
W[~,i + 11 (0) give the transition probabilities for the exchangeprocesses. The 
general form of Wj i'i+ 11(o) and W~ i'i+ 11(o) for an operator D~ which satisfy 
(i) and (ii), are the same and given by 

Wti'i+ll(o) = (1 + COi_lOi+2)(1 - uoi_toi)(1 - uoioi+l)(1 - uoi+lOi+2) 

(2.7) 

where u = tanh K and C is an arbitrary constant. The operator /5~,~ is 
the usual spin-exchange operator ( S E O ) .  (17'19'23) The general form of 
w[i 'i+ll(o) is due to Haake and Thol. (23) [Their parameter /8----/SHT is 
related to our parameter C through the relation tinT = (C -2 u2)/(1 -- Cu2).] 

The reason that we consider an additional operator D~, o is twofold: 
i. It is generated by our RSDRG transformation. 
ii. It eliminates an infinite set of conservation laws (23) which seem 

inappropriate for a stochastic dynamics. These conserved modes are given 
by IIY= 1~" N U N N ~ i =  l~ = loj, ~ i.~ = i~ I-[j oj, etc., and they complicate any 
analysis in terms of a finite number of spins. One could use different 
choices of C for w~i'i+ll(o) and wtBi'i+ll(a). We will, however, choose 
C = 0 and use the same W [i'i+ 11(o) for both operators. Thus, our operator 
can be written as 

/~a = -- ( 1 / 2 )  2 A[oi,~ '+ l ] w [ i ' i +  1](O) 
i 

),( [ o l ( o  i - 0 i + 1 ) ( o ;  - o;+1) .-1-/8oioi+1o;o;+1] (2 .8)  

where 

W [i'i+ 1](o) = (1 - u o  i _  lO,)(1 - u o i o i +  1)(1 - uoi+ 1oi+2) (2.9)  

Equations (2.3), (2.8), and (2.9) define the dynamical problem of interest. 
We note that the case of fl = 0, C = u 2 in (2.6) and (2.7) has been examined 
by Zwerger. (19) We will compare our results with his in Section 7. 

We, of course, know everything about the equilibrium (t = 0) proper- 
ties of this system. We can ask what do we know about the dynamic 
properties of this model? It is convenient in discussing the dynamics to 
introduce the Fourier-Laplace transform 3 

�9 fo~dteiZt 1 C(q,  z) -~ - t -N E ei(n-m)qCnm(I) (2.10) 
tim 

= ( o _ q R ( z ) % )  (2.11) 

3 From here on we will omit the factor a o in qa o. 
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where 
1 K'~ - inq Oq = ~ ~ e o n (2.12) 

and R(z) is the resolvant operator 

R(z)  --Iz  - iDol-' (2.13) 

We can rewrite C(q, z) in the form 

C(q) 
C(q,z)  = z + iCb(q,z) (2.14) 

where C(q) is the static structure factor, (8) and dg(q,z) is the "memory 
function" associated with C(q,z). Using standard operator identities one 
can decompose ~(q,z)  into a "static" and a "dynamic" part: 

~b(q, z) --- ~b(~)(q) + ~b(d)(q, z) (2.15) 

where 

O(~)(q)e(q) = - (o_qD'~Oq) (2.16) 

and 

z ) d ( q )  = - i[ ((z oo 

- ( (D~a_q)R(z )%) .  C - ' ( q , z ) . ( a _ q R ( Z ) ( D o % ) )  ] 

(2.17) 

Note that ~(d)(q,z) goes to zero as 1/z  for large z, so ~(S)(q) has the 
physical interpretation of the initial decay rate for C(q, t). We can deter- 
mine ~(~)(q) explicitly. On applying/)o to a single spin 0 i we obtain 

"~ b t a i ~ O , + l ( O i _ l  - -  O,+2) "~ ai_~l(ai+ 1 -- 0/_2) ] 

(2.18) 

or, in terms of Fourier transforms, 

/~oOq = - 2 0 ( 1  + u)(20q[1 + u c o s Z q -  (1 + u)cosq] 

+ 2u(1 - cosq)Tq + u2(e -~q - 1)Vq } (2.19) 

1 ~q,~ E e  0,_2(0 . -  o,_~)o,+, (2.20) 

t ~eiq,~ o (2.2t) 
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We see that there are nonlinear contributions to l~ooq. One can then show 
that 

(o_ qD,,oq) = - 4a (1 - u2)3(1 - cos q) (2.22) 

We can therefore evaluate the static part of the memory function explicitly: 

~(S)(q) = 8a(1 - u2 f s inZ(q /2 ) ( - l (q )  (2.23) 

While we are unable to evaluate the dynamic part of the memory function 
explicitly we can simplify it somewhat by using its "one-body irreduceable" 
property. That is any linear part t o / g a q  does not contribute to q,(a) at its 
"end points." We can write 

q~(a)(q,z)C(q) 

= - i8a2(1 + u2)u2(1 - cosq) 

• - c o s q )  + u ( e - ' q  - 1) ,Tv(q,z) 

+ u(e iq - 1)e~vT(q,z ) + u2ePvv(q,z)) 

(2.24) 

where 

d~A B (q, Z) -~- (A _qR(z)Bq) - (A _qR(g)oq)C -l(q,  z ) (e_  qR(Z)Bq) 

(2.25) 
We can now check several important limits. For small wave numbers and 
frequencies we expect the problem to be dominated by the hydrodynamic 
mode associated with the conserved spin. That is, we expect the correlation 
function to be of the form 

C(0) 
C(q,z)  - - -  (2.26) 

z + iDq 2 

where D is the spin-diffusion coefficient. Comparing (2.26) with (2.14) we 
can read-off the formal expression 

D = lim lim 1 ~-~0 q-~0 7 q,(q,z) (2.27) 

We have written ~(s) and ~(a) in such a way that we can take the q limit 
directly and obtain 

D X = 2a(1 - u2) 3 -  i4a2(1 + uZ)u4d~vv (0, 0) (2.28) 

where X=  (1 + u ) / ( 1 -  u) is the static susceptibility [= C(0)]. Further- 
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more, since limq_~o (VqR(z)O_q) = 0 we can replace q)vv(O, 0) by 

c v  - ( voR (o) vo> 

and obtain 

where 

and 

(2.29) 

D = D ~'(1 - Q ) (2.30) 

D (s) = 2a(1 + u)2(1 - u) 4 (2.31) 

(1 + u 2) 
Q = i2au  4 - M Cv (2.32) 

( 1 -  U2) 3 

We also note that we can evaluate the memory function if(q, z) for all 
q and z in the noninteracting (u -- 0) limit as 

~imoep( q, z) = 8a sin2( q /2 )  (2.33) 

Notice that even in this limit there is a q dependence since there is still a 
dynamic coupling between spins. In this case r is independent of z 
and we obtain a Lorentzian frequency dependence for the dynamic struc- 
ture factor. 

3. GENERAL DEVELOPMENT OF THE RSDRG 

We first divide the system into cells containing two spins and associate 
an Ising block spin/~(= + 1) with each cell. We denote the spins in cell i by 
(i, a), where a = + 1 (see Fig. 1). The renormalization group transformation 
mapping the original equilibrium probability distribution P[a]  onto the 
probability distribution P [/~] governing the block spins is 

e[ ~] = Ee[ , , J r [  ~,10] (3.t) 
o 

where T[/~io] is the mapping function that picks out the slowly varying 

/zi-i /zi /zi.i  
x x x 

�9 �9 �9 �9 �9 �9 

q-I,- ~-J,, %- ~,+ o~+1,- o~§247 

Fig. 1. o Spins (solid circles) are grouped into two spins per celt./~ Spins (crosses) are block 
spins associated with each cell. Convention for labeling cells and cell constituents is shown. 
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degrees of freedom. We will determine the mapping function T[ ~[o] and 
the transformed SEO operator D [ ~ t/~'] as usual in the RSDRG method via 
the eigenvalue condition (5,s) 

DoT[ #lo] = D,T[ ~lo] (3.2) 

i.e., T[/x]o] is an eigenvector o f / ) [ a  [ o'] with the eigenvalue D[/~ [/;]. We 
also demand that T[/~ [ o] satisfy the normalization conditions (s) : 

E T [ / ~ l o ]  = 1 (3,3) 

and 

EP[o]T[ lz[o]T[/~'[ o] = 8~,~,P[/~] (3,4) 
1 7  

Next we define the projection of any spin variable A (o) onto the block 
spins via 

A (•)e[ ~] = ~P[o]T[/~[ o]A (o) (3.5) 

Using this definition we can then define a projection operator (s) 

?A (o) ~ E  T[ .Io]A ( . )  (3.6) 

and its complement 

P = - ( 3 . 7 )  

Using this projection operator it was shown in Ref. 13 that we can rewrite a 
general time-dependent correlation function 

CaB(t)= ~P[o]B(o)elS~ (3.8) 

in the form 

where 

m 

ca (t) = c3 (t) + ca (t) (3.9) 

CjB(t ) = ~ P[ p~] B( IQe D/A (I~) (3.10) 

is the slowly varying part of CAB(t) which projects onto the block-spin 
degrees of freedom and 

CAB(t) = ~ P[ o]( QB(o))e @ (Q A (a)) (3,11) 

is the rapidly varying part of Cae(t) which we should be able to treat using 
straightforward perturbation theory. 
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A key question at this point is whether/) ,  also leads to the conserva- 
tion of the total spin? We can prove the following theorem quite generally. 
Suppose M(o) is a conserved quantity 

/) ,M(o) = 0 (3.12) 

Then if M(/~) is the projection of M(o) along the block spins, as defined in 
(3.5), then, for a D~ satisfying (3.2) 

/),M(/~) = 0 (3.13) 

and M(/D is conserved on the # lattice. The proof is straightforward. 
Multiply (3.12) by P[o]T[ l~[a] and sum over a: 

~ P [ a ]  T[/~1 a]/)~M(o) = 0 (3.14) 

However, using the detailed balance (8) this becomes 

EP[o]M(o)DaT[ #[o]  = 0  (3.15) 
o 

After using (3.2) and the definition of M(#) we obtain 

P,P[/z]M(p~) = P[/~]SuM(/~) = 0 (3.16) 

Consequently our coarse-graining procedure preserves the conservation law 
to all orders in our development. 

4. PERTURBATION EXPANSION 

4.1. Statics 

Since we are unable to carry out the coarse-graining procedure de- 
scribed in the previous section exactly, we must use perturbation expansion 
methods for constructing the mapping function T[ ~tlo ] and the coarse- 
grained operator D [/~ I/~']- In carrying out this perturbation theory analysis 
we will treat the coupling between cells as a small parameter. In the cell 
notation the Hamiltonian can be written as 

H[o ]  = KcVc[o ~ + K,V,[o] (4.l) 

where 

vc[o]  = (1/2)Y, oi, oo,_o (4.2) 
i,a 

Vt[ o ] = (1/2) ~ o,.~o i+ a,- a (4.3) 
i,a 

and we allow for different cell (Kc) and intercell (1s couplings. If we take 
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K 1 = K c and expand in K c we get the usual cumulant expansion. It was 
shown in Ref. 14 that this method leads to poor results for the static 
correlation functions for this problem. Hence, we will allow K c and K x to 
vary from their bulk values and assume they have an expansion in an order 
parameter e: 

K~ * Kc(~) + *[Kc - Kc(~)] 
(4.4) 

Kt---~ Kt(c) + E[ K, - K,(,) ] 

where 

Kc(~)-- K0+ ~ ~~ ~ 
(4.5) 

K,(c) ~- K ~ + ~ cnK~ 

The parameters K o, K ~ K ~ K~ are to be determined through the imposi- 
tion of constraints on an order by order basis. With the expansions given 
by (4.4) and (4.5) and treating Vl[o ] to be explicitly of O(~), the Hamilto- 
nian becomes 

n[  o] = { Kc(~) + ~[ K~ - K~(~)]) V d ~] 
+e{KI ( r  (4.6) 

Expanding the equilibrium probability distribution to first order in c we 
obtain 

P[o] -- P0[a] (1  + e{AK,[ Vc(o ) -  Nuo/2 ] + K~ + O(e2)) (4.7) 

where 

Vo[ o] = e n~ / E e  n~176 (4.8) 
a t 

is the zeroth-order probability distribution, 

and 

Ho[o  ] = KoVc[a] (4.9) 

AK 1 = K -  K 0 + K ~ (4.10) 

u o = tanh K 0 (4.11) 

In order to simplify matters and since it will influence our results very little 
we will choose K~ such that AK I = 0. We have yet to determine K o and K ~ 
This will be carried out in Section 6. 
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4.2. Dynamics 

Here we develop the same type of perturbation expansion for the 

(4.12) 

dynamic operator Do. In the cell notation we have 

where 

/)c[ al  O,] = --(  1/2~f~, ,~A[ i '+ ; i ' - ]W[ i '+ ; i ' - ] (  O ) o , o '  
i 

X [Olc(Oi, + -a i_) (oL+-o[ ,_)  Jr 13Cai,+Oi,_.O[,+<_] (4.13) 

and 

(1/2~ N ~ A [i'+ ;i+ l,-I W[i.+ ;i+ 1,-l(g ~ / ) 1 [ " 1 ~  . ,z. .  o,o' , , 
i 

X [OQ(Oi,+--Oi+l,_)(O;,+--a;+l_) "~ 1310i,+Oi+l,_O;,+a;+l_] 
(4.14) 

Note that/)1,o explicitly couples cells. Consequently we must, for consis- 
tency, treat /)1,o to be of O(e). We also expand the dynamic coefficients 
ac ,  ~ tic and 13z as in (4.4) and (4.5). We therefore introduce the parame- 
ters %, e~~ s ~  af t ,  rio, rio, 13o, 13ff. We can then expand the various parts 
of D o in a power series in e and obtain the explicit terms in the expansion 

/~o =/~(o) + ,/~(,) + 0(,2) (4.15) 

The zeroth-order operator is 

1~o) = 1 ~'~A[i,+;i,-][1 - ~ ..., ~,o, ~ - UoOi,+ai-) 
i 

• [ a o ( a ~ , + - a i _ ) ( a ~ , + - a ~ _  ) + floa~,+o~,_a~,+a;_] (4.16) 

5. RENORMALIZATION TO O(c) 

Using the perturbation expansion described in Section 
construct T[/~[ o] and D~ in an expansion in e: 

r [  ~Io] = ro[ ~I~] + er~'~[ ~I~] + "  (5.1) 

~. : D ,  ~~ + ,D,<'~ + . . .  (5 .2)  

The eigenvalue condition (3.2) then becomes to zeroth order 

zS~~ ~1 o] = D~~ ~l ~] (5.3) 

4 we can 
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Table I. 
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Eigenfunctions and Eigenvalues of the Cell Operator D (0>. Also lhe 
Projection of o~,. Along the nth Eigenfunction 

i i iiiiiii i i  i i i  I 

o 0 

l o 

2 4ao(1 + uo) 

3 2fl 0 

i i IIII 

1 

1 (os,+ + a~._) 
[2(1 + Uo)] I/2 

1 (o;,+ - %_) 
[2(1 - uo)] 1/z 

1 
( l  - ~o2) ' /~ (~ ,+  o~ _ - Uo) 

u , l ,  I 

0 

a( | -u~  I/2 

0 

and to first order 

/9o(l)ToE/~1o] +/)o(~ ~1o] = D~(')T0[/~ o] + Dg)T( ' )  [ /~[o]  (5.4) 

The explicit solution of the zeroth-order problem involves the identification 
of the slowest varying degrees of freedom in a cell. The eigenfunctions q~}") 
and eigenvalues Xn of the zeroth-order operator/5~ (~ (4.14) satisfy 

and are normalized such that 

~] Po[ " ]  q'~")(~ m)(.) __ 8m,. (5.6) 

We list the four eigenfunctions and eigenvalues in Table I. We note that 
X o = 0 reflects the time independence of the "vacuum" state and that X 1 = 0 
reflects the conservation of the spin property. 

It is clear that To[ # I a] satisfying (5.3) and mapping the slowest modes 
onto the block spin variables is 

N/2 

To[/~1 a] = I~ T; [ /~[a]  (5.7) 
i=1 

where 

Then, since 

we easily obtain that 

r;[ r io ]  = (1/2)[1 + .;+~,~(o)] (5.8) 

D~~ ~1~'] = 0 (5.10) 

To[/xla ] satisfies the normalization conditions (3.3) and (3.4). Using these 
and the eigenvalue condition (3.2) one easily finds from (5.4) the first-order 

g~ .1o]  = 0 (5.9) 
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contribution to the renormalized operator given by 

D(') [  ,, I t*']Po[ ~'] = ( To[ ~, I o]ZS~'>To[ ~' I o] > (5.11) 
Having obtained To[/~ [ a] we can now carry out the static renormalization 
(3.1) to O(e). To this order the static renormalization is exactly the same as 
in the spin-flip case treated by Mazenko and Luscombe (14) (ML). The 
renormalized probability distribution turns out to be (14) 

[ , 0 ] (5.12) P[ bt] = Po 1 + aK~ (I + Uo) ~/*,/*i+~ 
l , a  

where 

P 0 -  1 2 N' (5.13) 

N'  being the number of cells in the system. Comparing (5.11) with our 
original probability distribution we see that the first-order renormalized 
static parameter K'  is given by 

g '  1 0 = ~K~ (1 + Uo) (5.14) 

We now proceed to the dynamic renormalization. We use the first-order 
term /)o (I), obtained through the expansions explained in Section 4, in 
(5.11) and obtain the first-order renormalized operator / j ( l ) .  It is in the 
same form as our original operator/)o (2.8) with w[i'i+ l]( ]%) = 1 and with 
the first-order renormalized dynamic parameters given by 

( I  - Uo)2(1 + Uo) 
,,, = , , o  ( 5 . 1 5 )  

4 

(1 - u0) 2 
f i ' -  (2a ~ +/3  ~ ) (5.16) 

8 
From (5.15) and (5.16) we get 

1 (2 + R•) (5.17) 
R ~ , -  2(1 + u0) 

where R/~, - - /3 ' /cr '  and we assume RBo = R/~ to first order. One can easily 
verify (using the u 0 given in Section 6) that starting at any nonzero 
temperature (0 < u < 1) and with a finite R~(u), the successively iterated 
values of R~ approach the fixed point: 

R*(u = 0) = 2 (5.18) 

If u = l, then the iterated values approach the other fixed point: 

R*(u = 1) = 2 (5.19) 

This shows that the operator/)B[o [ o'] does not disappear under the effect 
of renormalization transformation. 
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6.1. Recursion Relations for Observables 

The recursion relations for static observables resulting from an evalua- 
tion of coarse-grained variable using (3.5) to lowest order in e are identical 
to those found by ML. We recall the simple recursion relation satisfied by 
the magnetic susceptibility 

where 

and is given in Table I. 

x = 2. x' (6.1) 

Pl = (Oi,ax~l)(O))O (6 .2 )  

We now turn to the dynamic quantities. We implement (3.5) for the 
case A (o) = oi, a. Using (3.5) to lowest order in e we have 

A (t~) = v~/~t (6.3) 

Therefore, for the projected variable and its complement [see (3.6) and 
(3.7)] we have 

Pai,a ~ E To[ #1 o] /~i ~ PlXIt~I)(o) (6.4) 

and 

QOi,a = E ( l  -- (~ l ,n )v . (a ) '~ '~" ) (o )  (6 .5 )  
n 

We then use Eqs. (3.9) through (3.11) to obtain the recursion relation for 
C/,~;j,a,(t ) -- (O~,aOj,a,(t)) to lowest order in e: 

Ci,a;j,~,(t ) = g~Ci'j(t ) + u~ri,jaa' e -x2t (6.6) 

Taking the Laplace-Fourier transform we obtain 

where 

C(q, z) = 2u~ cos2(q/2)C'(q ', z) = 
2vZsinZ(q/2) 

z + i4ao(1 + u0) 
(6.7) 

Another dynamic quantity of interest is C v introduced in Section 2. 
Indicating the spin dependence of V 0 explicitly and using the same formal- 
ism which led to equations (3.9)-(3.11) we obtain 

Cv=- - (V(o )RoV(o ) )  = (V(I~)R~V(I~)) '  + ( Q V ( o ) R o Q V ( o ) )  (6.9) 

q ' =  2q (6.8) 
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We evaluate the coarse-grained quantity V(#) using equation (3.5) to 
lowest order and find V (~ (/~) = 0, That means, to this order in e we have 

C v = (QV(o )RoQV(o ) )o=  (V(o)R,,V(o))o--- C(v ~ (6.10) 

6.2. Determination of Unknown Parameters 

There are a number of parameters which enter into our analysis which 
have not yet been determined. We have the static parameters Ko, K ~ and 
the dynamic parameters ao, a~, flo, and f l o  

We determine the static parameters following the same procedure as 
ML, that is, we choose u ~ such that the thermal recursion relation is given 
by 

u' = u 2 (6.11) 

For a discussion of this relation see ML. We have from (5.26) 

K~ = 1 2 Uo K'(u) (6.12) 

where K'(u) is determined by (6.11). Then, given u ' =  u 2, u o is chosen by 
demanding that the recursion relation (14) for the quantity e = (o,.oi+ l) gives 
the exact value e = u. The resulting u o is 

u ( 4 -  u) 
u 0 = (6.13) 

2-t- u 2 

(6.12) and (6.13) together with (6.11) determine Ko(u ) and K~ 
Let us turn next to the determination of the dynamic parameters. In 

this regard we also follow the analysis of ML. The main difference here is 
that we must be careful in treating the conservation law. If we insert the 
form for C(q,z) given by (2.14) into (6.7) and take the small q and z limits 
we obtain 

X = lira lira eo(q'z) (6.14) 
2~,~X' q-0z-~o e/(q' ,z)  

If we then use (6.1) relating X and X' at this order we obtain the simple 
result 

Since 

1 = lira lim eo(q,z) (6.15) 
q-,O ~-,o q,'(q',z) 

4~( q, O) = af(q, u) (6.t6) 
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where f is some function of q and u alone, we have 

a f ( q , u )  
1 = l im a' (6 .17)  

q-~0 f (q ' ,  u') 

If we define 

A = c(/c~ (6.18) 

then 

A = lira f ( q , u )  (6.19) 
q~O f ( q ' , u ' )  

Using (2.27) we can write for small q that 

af(q,  u) = q2 X -~F (6.20) 

where 

F ~ O X (6.21) 

Then using (6.1) and (6.19) we obtain 

A -  1 ( r / a )  
8p~ ( F ' / a ' )  (6.22) 

We recall from Section 2 that 

F = F(~)(1 - Q)  (6.23) 

where 

F (s) = 24(1 - u2) 3 (6.24) 

and 

Q i2au 4 1 + u 2 = - -  C v (6.25) 
(1 --  U2) 3 

We see that one needs to determine Q in order to obtain A. We note first 
that C v in Q is multiplied by u 4. That means if we carry out a high- 
temperature expansion in u, we have the first three terms, without needing 
to evaluate C v. The low-temperature limit is considerably more compli- 
cated than the high-temperature limit. In particular we have not been able 
to extract the leading term for C v in a low-temperature expansion. We can 
however determine C v by our lowest-order renormalization analysis as 
explained in Section 6.1. There we found that to this order 

C v = ( V ( o ) R  o V ( o ) )  o (6.26) 
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Table I I .  Q(u) for 
Various u Values 

u Q 

0 0 

0.1 2.4 • 10 -5 

0.2 3.5 x 10 -4 

0.3 1.5 • 10 -3 

0.4 3.6 • 10 -3 

0.5 6.1 • 10 -3 

0,6 7.6 • 10 -3 

0,7 6.7 • 10 -3 

0.8 3.8 • 10 -3 

0.9 8.2 x 10 -a  

1.0 1.3 • 10-'* 

The average in (6.26) can be easily evaluated to give 

( "" t 
i v~ 4u4 2u2v2 4v~v] v 4 22 v~ 

c v = - ~  -X7 + --X7 + x2+ x - - - 7  + E + -X7 + ~ 

where 

and 

(6.27) 

X 2 = 4ao(1 + u0) (6.28) 

•3 = 2/30 (6.29) 

As will be explained later in this section, a o and /30 depend on A and 
therefore on Q, through Eqs. (6.22) and (6.23). This means that the Cv in 
Eq. (6.25) depends on Q itself. This is not a severe limitation since, as we 
shall see in a self-consistent manner, Q is small for all temperatures. As a 
first step we choose Q = 0. This gives ~ = (F ( s ) / a ) / ( F  ( ' ) / a ' )  =-- A (s) . Then 
we evaluate Cv through Eq. (6.26) using A (s) in the expressions that give a 0 
and/3 o 4 as a function of temperature. The resulting function Q is shown in 
Table II for various temperatures. We note that Q is never larger than 0.008 
over the entire temperature scale. Therefore it is an excellent approximation 
to take Q = 0 in the equation of A. Thus we will use 

A -  1 r ( '~ /a  _ 1 (6.30) 
84 r ' ~ / ~  ' 8d(1 + .2)3 

in the rest of our calculations. 

4The dependences of a 0 and /30 on A can be seen through equations (6.31)-(6.32) and 
(6.31)-(6.34), respectively. 
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Having determined A(u) we then have from (5.15) that 

~o = 4Aa (6.31) 
(1 - Uo)2(1 + u0) 

Consider now the cell dynamic parameter %. Since ao is an interceU 
parameter it should be smaller than a o for the consistency of our perturba- 
tion expansion. However, a ~ diverges as u goes to 1. For simplicity we 
assume that 

a o = Ca ~ (6.32) 

where C is a temperature-independent constant. We determine C so that 
the same site dynamic correlation function (see Section 7) gives [Eq. (7.18)] 
the correct value for the diffusion coefficient at u = 0. This yields C = 2.56. 

We can now determine flo and rio. It is reasonable to assume that to 
lowest order in E we have 

13o 130 _ 13 = Re (6.33) 
~0 Ot 0 O~ 

We have shown in Section 5 that R e = 2 at the high-temperature fixed 
point u = 0. Since u always flows to this point in our iterative solutions of 
the recursion relations we will take 

R e = 2 (6.34) 

Then, using Eqs. (6.31)-(6.34) we obtain the temperature dependences of 
the coefficients flo and 13o. 

7. ANALYSIS OF THE RECURSION RELATIONS 

Since the static recursion relations have been studied extensively in 
ML, we focus here strictly on dynamical results. Writing the recursion 
relation (6.7) in terms of the Fourier transformed correlation function 
C(q, o~) we have 

2u~ 32~'2~'2ao sin2(q/2) 
C(q,o~) = ~ cos2(q/2)C'(q' ,oY) + ~~ 2 + 64ao2~ 4 (7.1) 

where the renormalized frequency oY is given by 

~0'= --~ (7.2) 
A 

Let us first look at the diffusion coefficient D. It is related to C(q, co) by 

D X = lim lim ~ C(q, ~o) (7.3) 
,o--,o q-,O q 

Using (7.1) and (7.3) we find that the diffusion coefficient satisfies the 
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recursion relation 

Writing 

and using A = a' /a we have 

D = 4D'  (7.4) 

D = aF[  u] 

F(u) = 4AF(u') (7.5) 

Clearly this homogeneous recursion relation has a solution F(u) which is 
undetermined up to a multiplicative constant. Since as u ~ 0, A-~ 1/4 we 
have 

F(0) = F'(0) (7.6) 

and we can fix this constant by using the exact high-temperature limit 

r(0)  = 2 (7.7) 

We note, since A is given by the ratio 

x-'(r")/.) 
A = (7.8) 

4(x,)- ,(r,(.) / .,) 
that a solution of the recursion relation (7.5) is 

D = X- 1F(~) = D (') (7.9) 

Direct numerical iteration of the recursion relation leads to the same result. 
Another important dynamical quantity of interest is the dynamical 

exponent z. Dynamical scaling states that t ' =  b-Z t, where b = 2 is the 
rescaling factor. We also have t ' / t  = a ' /a  = A and A has already been 
determined in the previous section. Thus we use (6.30) in 

z = lim (ln A/ln 2) (7.10) 
u---~ 1 

and find 

z = 6  (7.11) 

We note that (7.11) is consistent with the condition 

z/> 5 (7.12) 

found by Haake and TholJ 23) In the model introduced by Zwerger the Vq 
term (2.20) in/)oo_ (2.19) does not appear. As a consequence, the dynamic 

(a) 4 memory function q~ , while not zero, is proportional to q for small q. The 
static memory function q,(~) is known exactly and is proportional to q2. 
Thus the small q limit of the memory function, in particular the diffusion 
coefficient (2.27), can be determined exactly to be 

O = 2o~( I  - -  U)3(1 + U 2) (7.13) 
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On comparing this with our diffusion coefficient (2.31), we note that (7.13) 
goes as 4 -3 for low temperatures while (2.31) has the behavior ~-4  
[ ~ ( 1 -  u) -1 is the correlation length.] For this reason, the dynamical 
exponent z = 5 obtained from (7.13) is different from our value z = 6. 

Let us next consider the same site time correlation function. Setting 
i = j and a = a' in (6.6) we obtain 

Co(t ) = u~C~(t) + p~e -x2t (7.14) 

We iterate (7.14) numerically. The results are shown in Fig. 2 for 0 < at 
<-5.0. The effect of the critical slowing down (as u ~ 1) is clearly seen. We 
can write 

+~ dq 
Co(t ) = f -  ~ C(q,t) (7.15) 

For long times (at >> 1) we expect that only the wave numbers that are in 
the hydrodynamical region (q( << 1, ( is the correlation length) will contrib- 
ute to the integral and we can replace C(q, t) with its hydrodynamical 
form: 

C(q, t) = X e-Dq2t (7.16) 

so that 

X 
Co(t ) - (4qrDt),/2 (7.t7) 

Fig. 2. 

0.8 

+- 0.6 

J 
0.4 

0.2 

k ~ k i I 

0.7 

0.8 1.6 2.4 

~t 

3.2 4.0 4.8 

Time dependence of the spin-spin autocorrelation function from the RSDRG at 
various temperatures. 
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- I ~  u -- o.5"" - 
~ l O  = - - . .  

d ~ ' - - .  u = o . 3 " ' - .  " "  

u=O.O ~ .  

% ,  . . . . . . .  . . . . . . . .  
10 3 

Fig. 3. Time dependence of Co(at ) for long times. The dashed lines represent the approxi- 
mate hydrodynamic regions. 

for large t. For shorter times, the wave-number values that are in the 
critical region (q~ >> 1) will also be important and (7.17) will no longer hold. 
We note that the onset of the hydrodynamical regime is temperature 
dependent. Therefore the transition of Co(t) to the hydrodynamical region, 
that is, to the region of n = - 1/2 power law decay, will start at different 
time values for different temperatures. This effect is seen clearly in Fig. 3. 
When we fit the numerical solution of (7.1) to the form 

X (7.18) 
C~ = 2[~rD(u)t] "(") 

for intermediate to large times, we obtain the correct exponent n = 1/2 and 
the diffusion coefficient D(u)= D (S)(u). We now consider the frequency- 
and wavenumber-dependent correlation function recursion relation (7.1). 
We iterate (7.1) again using the exactly known u = 0 limit as the boundary 
condition. In Fig. 4 we show C(q, ~) against w at various temperatures and 
for small values of q, Also shown in the same figure is C (s) (q, ~) obtained 
by using the exactly known static memory function and neglecting the 
dynamic memory function: 

16(1 - u2) 3 sin2(q/2) 
C(')(q,~) = (7.19) 

w 2 + 64(1 - uZ)6sin4(q/2)C-2(q) 

Inspection of Fig. 4 shows that for small values of q and w and especially at 
high temperatures C(q, w) has a Lorentzian shape and is close to C (') (q, ~). 
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Fig. 4. Frequency dependence of the correlation function for the u and q values indicated. 
The solid lines and filled circles represent the RSDRG results, while the dashed lines and open 
circles denote C (s) (q, ~o). The values on the C(q, ~) and o~a- I axes should be multiplied by 
kl(u ) and kz(u), respectively, kt(0 ) = 0.25 • 10 -1, k2(0 ) = 0.25 • 102, kl(0.5 ) = 10 -5, k2(0.5 ) 
= 103, kl(0.8 ) = 0.25 • 10 -5 ,  k2(0.8 ) = 0.25 • 105. 

This can also be  seen in Fig. 5 where we plot  the peak  values C(q, 0) and  
C(S)(q,O) against  q. W e  note  that  for  q values q < 0.01, that  is, in the 
hyd rodynamic  regime, the behavior  of C(q, ~o) is basically identical to that  
of C (') (q, ~o). The  major  difference between C(q, ~) and C (s) (q, ~o) arises 
only in the region 0.17r < q < 1.0~r, 0 < ~0a- l < 0.2. As seen in Fig. 5 the 
peak  value of C(q, ~o) gradual ly  becomes  greater than  that  of C (3)(q, ~0) and  
C(q, ~o) starts developing an addi t ional  peak  located a round  ~o = 0, as we go 
f rom small to high values of q. This peak  persists to u -- 0 (near q = 7r). We  
know, however,  f rom the exact  solution at  u = 0 that  it is an  ar t i fact  of our  
approximat ion .  The  source of this spurious peak  can be easily seen in an  
analysis of (7.1). The  point  is that  the te rm propor t iona l  to s in2(q/2)  in 
(7.1) generates a very strong f requency dependence  near  ~0 = 0 owing to the 
rescaling ~0~ ~0/2x under  normalizat ion.  If  o~ is not  small, and  since 1 /A 
> 4, one finds after a few iterations that  one scales to very large frequencies 
and  the s in2(q/2)  te rm scales to small values. One does not  obta in  this 
effect if ~0 is very small. Consequent ly  we generate  this peak  near  o~ = 0. 
This effect appears  to be tied to a piece of physics neglected in our 
t rea tment  of this problem.  The  peak  is associated with a very small 
f requency rescaling factor  A. This rescaling factor  is physically sensible in 
treating small wave numbers .  I t  seems reasonable,  however,  that  this 
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Fig. 5. Wave-number dependence of C(q, 0) for the u values indicated. The filled circles are 
the RSDRG results, while the open circles are C(S)(q, 0). The C(q, 0) axis should be multiplied 
by k(u). k(0) = 10 -2, k(0.5) = 1.0, k(0.8) = 103. 

rescaling factor, which reflects a conserved mode at q = 0, is inappropriate 
for describing the time rescaling for wave numbers near q = ~r. In order to 
remedy this inadequacy in the theory one should go back and carry 
through the analysis where one keeps track of the variables associated with 
the antiferromagnetic points and determine the appropriate time rescaling 
for these variables. 

In conclusion we point out that our treatment here is rather unsophisti- 
cated. We have worked at the lowest order in perturbation theory and 
treated cells with only two spins. Consequently our results are rather rough, 
particularly for intermediate values of wave numbers. We believe, however, 
that we know how to systematically improve these results. Our pr imary 
purpose in this paper  has been to show that we can develop a sensible 
R S D R G  analysis for treating dynamic systems with a conserved variable. 
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